In this section:
Ribbon recommends using the Transparency Profile to configure transparency on the SBC Core for new deployments, as well as applying additional transparency configurations to existing deployments. Do not use IP Signaling Profile flags in these scenarios because the flags will be retired in upcoming releases. Refer to the SBC SIP Transparency Implementation Guide for additional information.
Session Description Protocol (SDP) is a set of rules defining how to set the multimedia sessions to allow all endpoints to participate in the session effectively.
Interactive Connectivity Establishment (ICE) is a protocol used by systems that cannot determine their transport address as seen from the remote end, but that can provide several possible alternatives (see ICE-Lite Support below). The SDP transparency feature allows SDP and ICE media to pass through the SBC as-is to the far end.
SDP Transparency functionality includes:
When SDP Transparency is enabled, the SBC overrides all IP Signaling Profile SDP-related flags.
For additional audio/video support topics, refer to:
The SBC Core supports suppressing the 183 response without SDP upon receipt of 3xx Redirect response for reasons such as:
An endpoint perceives a 183 without SDP response as being an extra message resulting in unexpected behavior.
Endpoints that behave irregularly upon receipt of a 183 without SDP response prior to cut-through.
Two IP Signaling Profile ingress flags are available to configure the SBC to suppress 183 response without SDP:
suppress183For3xxRedirectResponse
suppress183WithoutSdp
% set profiles signaling ipSignalingProfile <SIP profile name> ingressIpAttributes flags suppress183For3xxRedirectResponsek <disable | enable> % set profiles signaling ipSignalingProfile <SIP profile name> ingressIpAttributes flags suppress183WithoutSdp <disable | enable>
The following table describes the effects of enabling/disabling these flags.
Suppress 183 Response without SDP Flags
Suppress 183 for 3xx Redirect Response | Suppress 183 without SDP | Action |
---|---|---|
Enabled | Enabled |
|
Enabled | Disabled | 3xx redirect response triggers 183 without SDP, and hence is suppressed |
Disabled | Enabled | A 183 without SDP triggered due to suppression of 3xx redirect response' (or for any other reason). |
Disabled | Disabled | Existing behavior persists. |
For configuration details, refer to Ingress IP Attributes - SIP - CLI or IP Signaling Profile - Ingress IP Attributes (EMA).
The SBC supports passing the list of received audio codecs in the SDP offer to PSX in the policy request. The SBC also passes the received audio codec information list as received in the ingress SDP to PSX in the policy request.
The SBC uses the modified calling number returned by the PSX in the policy response in formatting the egress call leg request. The P-CDR information is written onto the SBC accounting records, populating the “Egress External Accounting Data” field for STOP and ATTEMPT CDR records.
Do not use deriveFromOtherLeg
when configuring H.323 or SIP trunk groups to use INVITEs with no SDPs.
sendAllAllowedCodecsForLateMediaInviteOrReInvite
flag controls the handling of audio codecs that the SBC offers in response to a late media INVITE or re-INVITE without SDP for transcoded calls.For pass-through calls, the SBC always offers a subset of the codecs advertised by the associated peer. The SBC Offer codec list is classified as a subset because the list applies the codec policy filters.
Example 1: G711 pass-through call
If the SBC receives the re-INVITE with no SDP on egress, it generates an offer for G711, G729. The SBC does not offer G726 and AMR because the call is marked as a relay call with DSP removed, and hence the transcoded codecs.
Example 2: G711 to AMR transcoded call
The SBC has an existing flag for late media INVITEs or re-INVITEs which specifies the included codecs in the SDP offer, but the behavior differs based on whether the base call is a pass-through or transcoded call. For pass-through calls, the codecs offered do not include those supported for transcoding. For certain scenarios, the originator of the INVITE/re-INVITE must know the full capabilities even for a pass-through call. This feature addresses the pass-through case where the full set of codecs is needed.
When the sendSBCSupportedCodecsForLateMediaReInvite
flag is enabled, the SBC sends all the codecs supported on a particular leg as an SDP OFFER in the 200 OK response to a late media re-INVITE. The OFFER sent in the 200 OK contains all the pass-through and transcodable codecs supported on that leg. This behavior is applicable only for late media re-INVITE requests. The flag does not have any impact on late media INVITE requests.
For example, the SBC might need an additional codec if one of the original parties in a pass-through two-way call attempts to bridge in a third party. For both transcoded and pass-through calls, when the sendSBCSupportedCodecsForLateMediaReInvite
flag is enabled, the SBC responds in the 200 OK to a late media re-INVITE request with the full set of codecs theSBC supports, including those available through transcoding. This flag takes precedence over the sendAllAllowedCodecsForLateMediaInviteOrReInvite
flag and the sendOnlyPreferredCodec
flag in the IP Signaling profile. You must set the SIP trunk group media flag lateMediaSupport
to "convert" to apply the behavior enabled by the sendSBCSupportedCodecsForLateMediaReInvite
flag.
Refer to Common IP Attributes - SIP - CLI or Common IP Attributes - Flags (EMA) for configuration details.
The SBC supports late media pass-through calls over GW-GW and also handles late media (offer-less) re-INVITEs on either side. This functionality is supported when the flag lateMediaSupport
is configured as passthru.
set addressContext <addressContext name> zone <zone name> sipTrunkGroup <sipTrunkGroup name> media lateMediaSupport passthru
When the flag lateMediaSupport
is set as passthru
, a late media INVITE/re-INVITE received on one leg is relayed to the other leg.
The cloud-based SBC SWe does not support Late Media pass-through calls over GW-GW.
Alternative Network Address Types (ANAT) semantics for the SDP grouping framework allows the expression of alternative network addresses (for example. different IP versions) for a particular media stream. This ability is useful in environments with both IPv4-only hosts and IPv6-only hosts.
The SBC supports ANAT formatting within the SDP offer to facilitate both an IPv4 and IPv6 address types. In addition, the SBC allows a configured address type preference where the user can configure the IP version that takes precedence when multiple IP version types are supported. If the SBC receives an ANAT offer and only a single IP version is supported on the received interface, then it uses that IP version regardless of the configured IP version type preference. Refer to SIP Trunk Group - Media - CLI or SIP Trunk Group - Media for configuration details.
Interactive Connectivity Establishment (ICE) is a protocol for Network Address Translator (NAT) traversal for multimedia sessions established with the offer/answer model. ICE uses the Session Traversal Utilities for NAT (STUN) protocol and its extension Traversal Using Relay NAT (TURN). ICE uses STUN and TURN servers to overcome network address translation issues that can occur when an endpoint is situated behind a NAT device. ICE solves the NAT issues for media streams. Support of the ICE specification is required by WebRTC (WRTC) endpoints.
The SBC is capable of acting as an ICE-Lite agent to allow the WRTC endpoints to connect to the existing VoIP network through the SBC using the DTLS-SRTP protocol. While acting as an ICE-Lite endpoint, the SBC interconnects with endpoints that have either ICE-Lite or full-ICE implementations. ICE-Lite is a lite version of the ICE protocol, which is defined to exchange media with each other. The interconnect with ICE-Lite end points is only for the purpose of IPv4 to IPv6 inter-working and no NAT traversal procedures are supported for ICE-Lite to ICE-Lite.
As SBC is not required to act as an ICE client (it is not located behind a NAT in current deployment models), the initial support for ICE is limited to the SBC acting as an ICE-Lite endpoint.
ICE-Lite key points:
STUN message processing:
Reachable IP address: an ICE-Lite agent has a reachable public IP address and can work with other agents that use ICE and are behind the NAT.
The ICE-Lite procedure starts with the offerer discovering all IP ports where it is reachable.These are known as local “candidates”. The “candidates” can be any or all of the following:
Use STUN to discover the Server Reflexive and Peer reflexive addresses on the NAT. Use TURN to discover the Relay candidates on the TURN relay. After the local candidates are discovered, the offerer (Full ICE Agent) sends them in the session description protocol (SDP) offer to the remote endpoints. The remote end point (SBC) discovers its own local candidates (which are only host candidates) and sends in the answer SDP to the offerer.
Once the offer/answer exchange completes, the Full ICE Agent assumes the role of ICE controlling agent and performs connectivity check between the candidate pairs (from local candidate to remote candidate) by sending the STUN messages. The SBC acts as a controlled agent, and responds to the STUN requests. Based on the success/failure of the connectivity check, the controlling agent selects a candidate pair to exchange the media, and sends a connectivity check on the selected pair with USE-CANDIDATE attribute to let the controlled agent know about the selected pair. The connectivity check may lead to the discovery of new local candidates due to the presence of Restricted or Symmetric NAT. These local candidates are also included in the procedure and are known as “Peer Reflexive Addresses”. The SBC, as a controlled ICE-Lite agent, cuts through the media after receiving USE-CANDIDATE on all components of the media stream (for example, if RTP and RTCP are required for a stream, the media is only cut-through when USE-CANDIDATE is received for both RTP and RTCP).
The controlling agent sends an updated offer by using the selected local candidate in the default IP port of the media line, and the controlled agent (SBC) responds by sending its local candidate in the default IP port of the media line to complete the ICE-Lite procedure. Use the Full ICE agent (using the ICE Restart procedures) to restart the Ice-lite procedure if the Media ports change during a call.
The ICE-Lite procedure starts with the offerer discovering all IP ports where it is reachable
The SBC supports bundling of various streams (audio/video) over the same IP/port pair using an SDP grouping framework extension named BUNDLE. The SBC uses thee BUNDLE with the SDP OFFER/ANSWER mechanism to negotiate the usage of a single address:port combination (BUNDLE address) for receiving media (bundled media) associated with multiple SDP media streams ("m=" lines ). The address:port combination used for sending bundled media may be the same as the BUNDLE address, used to receive bundled media, depending on whether symmetric RTP is used. Enable the the sdpAttributesSelectiveRelay
flag for bundling.
The SDP media-level attribute, "bundle-only", is parsed and used to identify that specific media is only used if bundled and resides within a BUNDLE group. The "bundle-only" attribute is a property attribute with no value.
The use of a BUNDLE group and a BUNDLE address also allows the usage of a single set of Interactive Connectivity Establishment (ICE) candidates for multiple "m=" lines.
If using RTP/RTCP multiplexing, use the same address:port combination for all RTP and RTCP packets.
Single-bundle
The SBC accept offers that express bundling with a single bundle. A bundle may have one or more streams.
Stream
You can tag a stream as 'bundle-only' with the port set to '0'.
Bundle Only
The SBC accepts offers including bundled streams with the bundle-only attribute set, including:
The SBC negotiates the bundling of streams using the "a=group:BUNDLE" attribute at the session level:
If the peer supports the bundle:
The following is an example for OFFER and ANSWER mechanism.
OFFER
v=0 o=alice 2890844526 2890844526 IN IP4 10.32.241.3 s= c=IN IP4 10.32.241.3 t=0 0 a=group:BUNDLE audio video m=audio 10000 RTP/AVP 0 a=mid:audio a=rtpmap:0 PCMU/8000 a=extmap 1 urn:ietf:params:rtp-hdrext:sdes:mid m=video 10002 RTP/AVP 31 32 a=mid:video a=rtpmap:31 H261/90000 a=rtpmap:32 MPV/90000 a=extmap 1 urn:ietf:params:rtp-hdrext:sdes:mid
ANSWER
v=0 o=bob 2808844564 2808844564 IN IP4 biloxi.example.com s= c=IN IP4 biloxi.example.com t=0 0 a=group:BUNDLE audio video m=audio 20000 RTP/AVP 0 a=mid:audio a=rtpmap:0 PCMU/8000 a=extmap 1 urn:ietf:params:rtp-hdrext:sdes:mid m=video 20000 RTP/AVP 32 a=mid:video a=rtpmap:32 MPV/90000 a=extmap 1 urn:ietf:params:rtp-hdrext:sdes:mid
Bundling is only allowed when security is relayed, and:
The SBC allows relaying multiplexed RTP and RTCP traffic.
Within a BUNDLE group, the offerer and answerer must enable RTP/RTCP multiplexing for the RTP-based media associated with the BUNDLE group.
When RTP/RTCP multiplexing is enabled, the SBC uses the same address:port combination to send all RTP and RTCP packets associated with the BUNDLE group. Each endpoint sends the packets towards the BUNDLE address of the other endpoint and uses the same address:port combination to receive RTP and RTCP packets.
Using media stream bundling and RTCP multiplexing ensures that only a single ICE transaction on one port is required. This limits the occurrence of NAT traversal issues and reduces the time needed to establish a call.
For the OFFER:
For the ANSWER:
The RTP contains two components:
With the increased use of Network Address Port Translation (NAPT), using separate UDP ports to transport RTP and RTCP has become problematic considering maintaining multiple NAT bindings is costly.To overcome these scenarios, the SBC supports RTP and RTCP flows on a single port to ease NAT traversal. This functionality is known as RTP and RTCP Multiplexing or RTCP-Mux.
Prior to the 6.1.0 release, the SBC supported RTCP-Mux in pass-through scenarios where the SBC relays media in an end-to-end scenario. This support was sufficient for some limited use cases, such as WRTC-to-WRTC call scenarios, where the endpoints terminated media encryption with no need for the SBC to interwork with any media attributes.
The SBC Core is enhanced to support interworking between RTCP-Mux to non-RTCP-Mux, as well as in the reverse direction. In this scenario, both egress and ingress packet Service Profiles (PSPs) either support RTCP-Mux or fallback to transport RTP and RTCP streams using separate ports. The rtcpMux
flag is added to the PSP to configure RTCP-Mux.When the SBC Core triggers the RTP interception on an RTCP-Mux call (for example, lawful intercept), the SBC forks the RTP and RTCP streams to a single port towards the mediation server. If the intercept is performed in an RTCP-Mux session, the stream sent towards the mediation server is also multiplexed with RTP and RTCP sent over the same port.
RTCP bandwidth requirements do not change with the use of RTCP-Mux. The SBC transmits bandwidth attributes (RR/RS) as per the existing configuration.
The rtcpMux
flag is visible only when the rtcp
control is enabled on the PSP.
The following table describes the RTCP-Mux to non-RTCP-Mux interworking scenarios for offer/answer:
RTCP-Mux to non-RTCP-Mux Interworking
Interworking Scenarios | Offer from Ingress | Offer to Egress | Answer from Egress | Answer to Ingress | RTCP Flow Ingress Port(s) → Egress Port(s) |
RTCP-Mux enabled on both PSPs | “a=rtcp-mux" | “a=rtcp-mux” | “a=rtcp-mux” | “a=rtcp-mux” | (P1)→(P1) |
“a=rtcp-mux” | “a=rtcp-mux" | No Mux | “a=rtcp-mux” | (P1)→(P1,P2) | |
No Mux | “a=rtcp-mux” | “a=rtcp-mux” | No Mux | (P1,P2)→(P1) | |
No Mux | “a=rtcp-mux” | No Mux | No Mux | (P1,P2)→(P1,P2) | |
RTCP-Mux enabled on ingress only | “a=rtcp-mux” | No Mux | No Mux | “a=rtcp-mux” | (P1)→(P1,P2) |
No Mux | No Mux | No Mux | No Mux | (P1,P2)→(P1,P2) | |
RTCP-Mux enabled on egress only | “a=rtcp-mux” | “a=rtcp-mux” | “a=rtcp-mux” | No Mux | (P1,P2)→(P1) |
“a=rtcp-mux” | “a=rtcp-mux” | No Mux | No Mux | (P1,P2)→(P1,P2) | |
No Mux | “a=rtcp-mux” | “a=rtcp-mux” | No Mux | (P1,P2)→(P1) | |
No Mux | “a=rtcp-mux” | No Mux | No Mux | (P1,P2)→(P1,P2) | |
RTCP-Mux disabled on both PSPs | “a=rtcp-mux” | No Mux | No Mux | No Mux | (P1,P2)→(P1,P2) |
No Mux | No Mux | No Mux | No Mux | (P1,P2)→(P1,P2) |
When using ICE where the SBC sends the RTP and RTCP are sent on separate ports, it checks the connectivity for each component. Some of these connectivity checks can be avoided by multiplexing RTP and RTCP on the same port, thus reducing the ICE overhead.
When the SBC offers the “a=rtcp-mux” attribute, it generates the offer that contains "a=candidate:" lines for both RTP and RTCP along with an "a=rtcp:" line (provided that the sendRtcpPortInSdp
flag is enabled) to designate a fallback port for RTCP in case the answerer does not support RTP and RTCP-Mux. This response is performed for each media stream when it desire the RTP and RTCP-Mux.
With an upgrade to SBC software that supports RTCP-Mux, an existing user running WRTC calls must enable the control rtcpMux
on both the PSPs to maintain backward compatibility. This is required when the sessions transparently relay DTLS and RTCP-Mux attributes using DTLS-SRTP relay control (dtlsSrtpRelay
) in the PSP and the flag sdpAttributesSelectiveRelay
is enabled.
Once the RTCP-Mux is negotiated, the subsequent re-INVITE(s) sent from the SBC to the same endpoint does not re-negotiate the RTCP-Mux. However, the RTCP-Mux is re-negotiated with the target endpoints for the redirect calls or for call transfer. The RTCP-Mux is also negotiated on a per leg basis when the endpoint triggers the negotiation or the SDP change includes an address change. Thus, the SBC never restarts ICE on its own and waits for the endpoint to trigger an ICE restart. If it add the new media stream in an existing session, ICE is negotiated on that stream. If the existing streams are updated for codec changes, ICE is not re-negotiated.
RTCP-Mux re-negotiation is consistent for both for the SBC ICE and non-ICE scenarios.
rtcp-mux.
When the sendRTCPBandwidthInfo and the multipleAudioStreamsSupport flags are enabled, observe the following behaviors: The following behaviors are expected when the configuration is enabled: Case 1: Case 2:Multiple Audio Streams Support and Send RTCP Bandwidth Info Flag Behavior
Invite SDP Received Invite Sent Out o=user1 53655765 2353687637 IN IP4 10.54.92.182
s=-
c=IN IP4 10.54.92.182
t=0 0
m=audio 6032 RTP/AVP 0
a=rtpmap:0 PCMU/8000
m=audio 6132 RTP/AVP 9
a=rtpmap:9 G722/16000
m=audio 6232 RTP/AVP 18
a=rtpmap:18 G729/8000
m=audio 6332 RTP/AVP 4
a=rtpmap:4 G726/8000
a=sendrecvm=audio 1026 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=sendrecv
a=maxptime:10
m=audio 1028 RTP/AVP 9
a=rtpmap:9 G722/16000
a=sendrecv
m=audio 1030 RTP/AVP 18
a=rtpmap:18 G729/8000
a=sendrecv
m=audio 1032 RTP/AVP 4
a=rtpmap:4 G726/8000
a=sendrecvInvite SDP Received Invite Sent Out m=audio 11088 RTP/AVP 0
a=rtpmap:0 PCMU/8000
b=RS:150
b=RR:150
m=audio 11098 RTP/AVP 18
a=rtpmap:18 G729/8000
b=RS:250
b=RR:250m=audio 11088 RTP/AVP 0
a=rtpmap:0 PCMU/8000
b=RS:150
b=RR:150
m=audio 11098 RTP/AVP 18
a=rtpmap:18 G729/8000
b=RS:250
b=RR:250
The SBC supports PRACK functionalities either on the ingress or on the egress leg and denotes it with the phrase "Asymmetric PRACK Interworking". The flag sdp100relIwkForPrack
supports Asymmetric PRACK interworking for the late media calls.
The configurations for the existing flags associated with the flag sdp100relIwkForPrack
, and the supported call flow scenarios, are summarized below:
Parameter configurations for supported call flows
rel100Support flag on the ingress Trunk Group | rel100Support flag on the egress Trunk Group | lateMediaSupport flag on the ingress Trunk Group | sdp100relIwkForPrack flag on the egress Trunk Group | Relevant Call Flow Scenario |
---|---|---|---|---|
enabled | disabled | enabled | passthru | enabled | Scenario 1 |
enabled | disabled | enabled | convert | enabled | Scenario 2 |
disabled | enabled | passthru | enabled | Scenario 3 |
Scenario 1: When PRACK is supported only on the ingress leg of the call, and the lateMediaSupport
flag is set to passthru
Asymetric PRACK Interworking - Supported Call Flow Scenario 1
Scenario 2: When PRACK is supported only on the ingress leg of the call, and the lateMediaSupport
flag is set to convert
Asymetric PRACK Interworking - Supported Call Flow Scenario 2
Scenario 3: When PRACK is supported only on the egress leg of the call, and the lateMediaSupport
flag is set to passthru
Asymmetric PRACK Interworking - Supported Call Flow Scenario 3
The SBC can process multiple audio m-lines, or a combination of audio and image m-lines, from the SDP. The SBC uses multiple m-lines (media streams) in call recording scenarios or several fax transmission types.
When the SBC supports both the ingress and egress legs of a call when multiple m-lines are present, the SBC determines a core stream among the m-lines. The core stream is the first m-line within the SDP, which contains a codec supported by the SBC. The SBC applies the media parameters specified by merging the ingress and egress Packet Service Profile (PSP) parameters, such as transcoding policy, to the core stream. For all other non-core audio or image media streams, the SBC allocates resources for the stream and transparently relays the m-lines. If the first stream containing a supported codec is for fax (m=image), then the SBC treats the call as fax and relays all other media streams.
Support for multiple m-lines is enabled or disabled using the multipleAudioStreamsSupport
option within media parameters in SIP trunk groups.
If you enable multiple m-line support, you also have the option to enable a separate media option in SIP trunk groups, which disables all SRTP (SAVP) streams present in incoming SDP. This disabling enables deployments to disallow SRTP on the ingress call leg, but not on the egress leg. Enabling the option disallowSrtpStream
means that for all SAVP streams in the incoming SDP, the SBC sets the port to zero, thus disabling the SAVP stream. The SBC handles any other streams in the SDP according to the multiple m-line handling just described. If the incoming SDP contains only one or more SAVP streams, the SBC rejects the call. The option disallowSrtpStream
can only be enabled when the multipleAudioStreamsSupport
option is enabled.
The multiple m-line support applies only to cases where the m-lines present consist of all audio streams or a combination of audio and image media streams. The SBC maintains its default behavior if the non-core streams are video or other non-audio, non-image streams. To apply this feature, enable the multiple m-line support on both ingress and egress SIP Trunk Groups.
When the multipleAudioStreamsSupport
option is disabled, the SBC default behavior takes place.
For more information, refer to:
In specific call scenarios, the SBC treats the Offer-Answer (OA) as a MODIFY Offer-Answer cycle, but the peer treats it as an INITIAL Offer-Answer cycle. According to RFC 3261, the response from the peer is expected within 300 seconds. The SBC, however, assumes a 20-second response, and therefore any delay in the response from the peer which exceeds of 20 seconds causes call failure.
Currently, the internal Offer-Answer (OA) timer value is fixed and cannot be configured. To overcome this limitation, the SBC is enhanced with a new parameter offerAnswerTimer
to configure this OA timer.
The following figure depicts the call message flow diagram in the Offer-Answer cycle:
Message Flow Diagram in Offer-Answer Cycle