This section describes the steps to perform in addition to the steps described in Instantiate Standalone SBC on Azure - Version 2 necessary for creating an HFE/SBC on Azure. All commands used in this section are part of the Azure CLI.
HFE Node Network Setup
HFE nodes allow sub-second switchover between SBCs of an HA pair, as they negate the need for any IP reassignment.
For each SBC HA pair, use unique subnet for pkt0 and pkt1.
The interfaces may sometimes display in the incorrect order on the HFE node at the Linux level. However, this is not an issue because the HFE script ensures the entire configuration is set up correctly based on the the Azure NICs, not the local interface names.
Azure requires that each interface of an instance is in a separate subnet, but within the same virtual network. Assuming all Management interfaces are from the same subnet and HFE interfaces to the associated SBC PKT share a subnet, a minimum of six subnets are necessary for a full HFE setup.
HFE 2.1
In HFE 2.1, there are two HFE nodes - one to handle untrusted public traffic to the SBC (for PKT0) and the other to handle trusted traffic from the SBC to other trusted networks (from PKT1). In this section, the HFE node handling untrusted traffic is referred to as the "PKT0 HFE node", and the HFE node handling trusted traffic as the "PKT1 HFE node".
Both HFE nodes require three interfaces, as described below:
HFE 2.1 - Interface Requirement
Standard/Ubuntu Interface Name | NIC | PKT0 HFE Node Function | PKT1 HFE Node Function | Requires External IP? |
---|---|---|---|---|
eth0 | nic0 | Public Interface for SBC PKT0 | Private interface in for SBC PKT1 (can only be connected to/from instances in same subnet). | Yes (only on PKT0 HFE node) |
eth1 | nic1 | Management interface to HFE | Management interface to HFE. | Optional |
eth2 | nic2 | Interface to SBC PKT0 | Interface to SBC PKT1. | No |
Steps to Create SBC HA with HFE 2.1 Setup
To create the SBC HA with HFE, perform the following steps:
- Install and login to the Azure CLI
- Create Resource Group and Network with six subnets
- Configure the Storage Account for SBCs
- Create the User Assigned Managed Identity
- Configure HFE Nodes
- Additional Steps for SBC Setup for HFE 2.1
Configure HFE Nodes
To create HFE setup, use the HFE Azure Shell Script included in the cloudTemplates.tar.gz, named called HFE_AZ.sh.
Configure the Storage Account
The script HFE_AZ.sh
is stored in a container within a storage account. This allow the HFE nodes to download and run the script during the VM startup.
To configure the storage account, perform the following steps:
Create a storage account by executing the following command:
Syntaxaz storage account create --name <NAME> --resource-group <RESOURCE_GROUP_NAME> --kind storageV2
Exampleaz storage account create --name rbbnhfestorage --resource-group RBBN-SBC-RG --kind storageV2
Create a container by executing the following command:
Syntaxaz storage container create --name <NAME> --account-name <STORAGE ACCOUNT NAME> --public-access blob --auth-mode key
Exampleaz storage container create --name hfescripts --account-name rbbnhfestorage --public-access blob --auth-mode key
Upload the script HFE_AZ.sh to the container by executing the following command:
Syntaxaz storage blob upload --name <NAME> --file <HFE_AZ.sh> --container-name <CONTAINER NAME> --account-name <STORAGE ACCOUNT NAME>
Exampleaz storage blob upload --name HFE_AZ.sh --file /tmp/HFE_AZ.sh --container-name hfescripts --account-name rbbnhfestorage
Make the storage account accessible for the instances by allowing access to virtual machines in both subnets used for ETH0 and ETH1 (to handle when management interface is used) on the HFE node (ensure that the subnets exists).
Syntaxaz storage account network-rule add --account-name <STORAGE ACCOUNT NAME> --subnet <SUBNET NAME of SUBNET USED FOR ETH0 of HFE NODE> --vnet-name <VIRTUAL NETWORK NAME>
Example
az storage account network-rule add --account-name rbbnhfestorage --subnet hfepublic --vnet-name RibbonNet
HFE Node Initial Configuration
Azure requires that each interface of an instance is in a separate subnet, but within the same virtual network. Assuming all Mgmt interfaces are from the same subnet and HFE interfaces to the associated SBC PKT share a subnet, a minimum of six subnets are necessary for a full HFE setup.
You can perform the initial configuration of the HFE nodes using custom-data and cloud-init.
The list of cloud-init enabled Linux VMs is available in Microsoft Azure Documentation.
Custom Data Example
An example of the custom data for a HFE node is given below:
HFE Variables
The HFE has variables that are required to be updated. When using cloud-init, update the the HFE variables in the custom data.
The following table contains the values that you must update:
Value to be updated | Description | Example |
---|---|---|
<HFE_SCRIPT_LOCATION> | The URL for HFE_AZ.sh that is contained in a VM within a storage account. You can retrieve the URL by executing the following command: | https://rbbnhfestorage.blob.core.windows.net/hfescripts/HFE_AZ.sh |
<ACTIVE_SBC_NAME> | The instance name for the Active SBC | rbbnSbc-1 |
<STANDBY_SBC_NAME> | The instance name for the Standby SBC | rbbnSbc-2 |
<REMOTE_SSH_MACHINE_IP> | The SSH IP/IPs to allow access through the mgmt port. Note:
| 43.26.27.29,35.13.71.112 |
<SBC_PKT_PORT_NAME> | This tells the HFE which PKT port it is communicating with. Can only be set as | PKT0 |
<CUSTOM_ROUTES> | It enables the HFE script to add these routes as part of its start-up process and verify these routes continue to be on the HFE throughout the uptime | 1.1.1.0/26_eth1, 2.2.2.0/28_eth2, 3.3.3.4/32_eth3 |
<ENABLE_PKT_DNS_QUERY> | This flag is used to enable/disable the support for the HFE to forward the DNS queries on the SBC PKT port correctly | 0 |
Updating HFE Variables
Azure does not support updating Custom Data after a VM is created. To update an HFE variable, use the following procedure:
- Log on to the HFE node, as user specified during instance creation.
Enter the updated variable to
/opt/HFE/natVars.user
. For example:echo "REMOTE_SSH_MACHINE_IP=\"10.27.0.54,10.36.9.6\"" | sudo tee -a /opt/HFE/natVars.user
Reboot the HFE:
sudo reboot
Any variable added to/opt/HFE/natVars.user
will overwrite the values set as the variables in custom data. To add in a new Remote SSH Machine IP, ensure to supply the full list of IPs you wish the routes to be created for.
Supported Images
Ubuntu LTS are the supported images for use with HFE setups.
Create HFE Nodes
To create HFE nodes, perform the steps described below.
Create Public IPs
Create at least one Public IP for ETH0 of the PKT0 HFE Node. Optionally, create up to two additional Public IPs to access the MGMT interfaces on both HFE nodes.
Create the Public IPs by executing the following commands:
az network public-ip create --name <PUBLIC IP NAME> --resource-group <RESOURCE-GROUP-NAME> --allocation-method Static
Create NICs
To create NICs, use the following command syntax:
az network nic create --name <NIC NAME> --resource-group <RESOURCE-GROUP-NAME> --vnet-name <VIRTUAL NETWORK NAME> --subnet <SUBNET NAME> --network-security-group <SECURITY GROUP NAME>
HFE 2.1
For HFE 2.1, create a total of six NICs (three for each interface).
The following table contains the extra flags necessary for each interface:
Table 2 HFE 2.1 - Extra flags for each interface
HFE | Interface | Flags |
---|---|---|
PKT0 HFE | eth0 | --public-ip-address <PUBLIC IP NAME> --ip-forwarding --accelerated-networking true |
eth1 | --public-ip-address <PUBLIC IP NAME> (optional) --accelerated-networking true | |
eth2 | --ip-forwarding --accelerated-networking true | |
PKT1 HFE | eth0 | --ip-forwarding --accelerated-networking true |
eth1 | --public-ip-address <PUBLIC IP NAME> (optional) --accelerated-networking true | |
eth2 | --ip-forwarding --accelerated-networking true |
Create the VMs for HFE Instances
Create a VM for each HFE instance. Use the following command syntax:
az vm create --name <INSTANCE NAME> --resource-group <RESOURCE_GROUP_NAME> --admin-username <UserName> --custom-data <USERDATA FILE> --image <IMAGE NAME> --location <LOCATION> --size <INSTANCE SIZE> --ssh-key-values <PUBLIC SSH KEY FILENAME> --nics <ETH0 NIC> <ETH1 NIC> <ETH2 NIC> --boot-diagnostics-storage <STORAGE ACCOUNT NAME> --assign-identity <USER ASSIGNED MANAGED IDENTITY ID>
The following table describes each flag:
Table 4 VM Creation - Flag Description
Flag | Accepted Values | Example | Description |
---|---|---|---|
name | rbbnSbc | Name of the instance; must be unique in the resource group. | |
resource-group | RBBN-SBC-RG | Name of the Resource Group. | |
admin-user-name | rbbn | The default user to log on. | |
custom-data | File name | hfeUserData.txt | A file containing the HFE user data. Use this option for cloud-init enabled images. For more information, see Custom Data Example. |
image | Canonical:UbuntuServer:18.04-LTS:latest | The name of an image. For more information, see Supported Images. | |
location | East US | The location to host the VM in. For more information, refer to Microsoft Azure Documentation. | |
size | Standard_D8s_v3 | Indicates instance size. In AWS this is known as 'Instance Type', and Openstack calls this 'flavor'. For more information on instances size, refer to Microsoft Azure Documentation. Note:
| |
ssh-key-values | File Name. | azureSshKey.pub | A file that contains the public SSH key for accessing the You can retrieve the file by executing the following command:
Note: The Public Key must be in openSSH form: |
nics | Space-seperated list | hfe-pub hfe-mgmt-pkt0 hfe-pkt0 | The names of the NICs created in previous steps. |
boot-diagnostics-storage | Storage Account Name. | sbcdiagstore | The storage account created in previous steps. This allows the use of the serial console. |
assign-identity | User Assigned Managed Identity ID | /subscriptions/<SUBSCRIPTION ID>/resourceGroups/RBBN-SBC-RG/providers/Microsoft.ManagedIdentity/userAssignedIdentities/rbbnUami | This is ID for the User Assigned Managed Identity created in previous steps. You can retrieve it by executing the following command:
|
HFE Routing
The HFE setup requires routes in Azure to force all the traffic leaving PKT0 and PKT1 to route back through the HFE.
Consider the following when creating routes in Azure:
- Custom routes are not given complete priority over the standard Azure routing. If there is a more specific Azure route, Azure directs traffic based on that default rule.
- For example, if you create a custom route to 0.0.0.0/0 via the HFE, but send the traffic to a private IP within the same Virtual network, Azure does NOT route via the HFE eth2. Instead, the traffic flows directly from the SBC to the private IP. Refer to Virtual network traffic routing on the Microsoft Azure website for information on default rules.
- If a custom route destination matches a default route destination, the SBC uses the custom route.
- Ribbon recommends to supply a specific IP or CIDR of the endpoints as the destination IP, to prevent any routing issues with the Azure default routing rules.
- Routes are applied to all traffic within a subnet. If multiple routes using the same destination address exist, the SBC can use any route.
- If multiple SBC setups are using the same endpoint (for example, in an SLB/SBC setup), separate the SBCs into separate subnets and route tables to ensure they route to the correct HFE. Refer to Configure SBC SWe on Azure for SLB, for more information.
To create the routes, perform the following steps:
Create the route-table:
Syntaxaz network route-table create --name <NAME> --resource-group <RESOURCE_GROUP_NAME>
Exampleaz network route-table create --name hfe-route-table --resource-group RBBN-SBC-RG
Create two rules for PKT0 and PKT1:
Syntaxaz network route-table route create --name <NAME> --resource-group <RESOURCE_GROUP_NAME> --address-prefix <CIDR OF ENDPOINT> --next-hop-type VirtualAppliance --route-table-name <ROUTE TABLE NAME> --next-hop-ip-address <IP FOR ETH3/ETH4 of HFE NODE>
Example
az network route-table route create --name pkt0-route --resource-group RBBN-SBC-RG --adress-prefix 77.77.173.255/32 --next-hop-type VirtualAppliance --route-table-name hfe-route-table --next-hop-ip-address 10.2.6.5
Attach the route table to the PKT0/PKT1 subnets:
Syntaxaz network vnet subnet update --name <SUBNET NAME> --resource-group <RESOURCE_GROUP_NAME> --vnet-name <VIRTUAL NETWORK NAME> --route-table <ROUTE TABLE NAME>
Example
az network vnet subnet update --name pkt0 --resource-group RBBN-SBC-RG --vnet-name RibbonNet --route-table pkt0-route
Additional Steps for SBC HFE Setup for HFE 2.1
To create the SBCs for HA with HFE setup, follow the instructions as described in Instantiate Standalone SBC on Azure - Version 2, with the addition of the steps below.
Configure NICs
The SBC requires 4 NICs, each one attached to a individual subnet for MGMT, HA, PKT0 and PKT1.
To create a standard NIC, use the following syntax:
az network nic create --name <NIC NAME> --resource-group <RESOURCE GROUP NAME> --vnet-name <VIRTUAL NETWORK NAME> --subnet <SUBNET NAME> --network-security-group <SECURITY GROUP NAME> --accelerated-networking true
Create NIC for PKT0 and PKT1
When creating the NICs for both SBC's PKT0 and PKT1 ports, include the flag --ip-forwarding
for receiving the traffic sent to the HFE node.
Example
az network nic create --name sbc1-pkt0 --resource-group RBBN-SBC-RG --vnet-name RibbonNet --subnet pkt0 --network-security-group RbbnSbcSG --ip-forwarding
Because the HFE Node receives all the traffic, it is not necessary to create Public IP addresses for these ports, or add them to the NICs.
Secondary IPs
The HA SBCs require configuring Secondary IPs on both the PKT0 and PKT1 ports for both the Active and the Standby instances.
- Before creating the Secondary IP configuration, create the NICSs for the SBCs.
- You cannot set the IP config name as "
ipconfig1
", because it is reserved for the primary IP configuration on a NIC.
Create and attach Secondary IPs to a network interface by executing the following command:
Syntax
az network nic ip-config create --name <NAME> --nic-name <PKT0/PKT1 NIC NAME> --resource-group <RESOURCE_GROUP_NAME>
Example
az network nic ip-config create --name sbc1-pkt0-secIp --nic-name sbc1-pkt0 --resource-group RBBN-SBC-RG
Configure PKT Ports
Configure the PKT ports using the SBC CLI.
Example
|
The correct SBC CLI configuration will look similar to the following:
|
Sample Meta Variable Table
Example Meta Variable table for a SBC HA is provided below:
SBC Userdata
The SBCs in the HFE environment require the following user data:
Table 5 SBC HFE - User Data
Key | Allow Values | Description |
---|---|---|
CEName | N/A | Specifies the actual CE name of the SBC instance. CEName Requirements:
|
ReverseNatPkt0 | True/False | Requires True for standalone SBC |
ReverseNatPkt1 | True/False | Requires True for standalone SBC |
SystemName | N/A | Specifies the System Name of the SBC instances. SystemName Requirements:
|
SbcPersonalityType | isbc | The name of the SBC personality type for this instance. Currently, Ribbon supports only Integrated SBC (I-SBC). |
AdminSshKey | ssh-rsa ... | Public SSH Key to access the admin user; must be in the form ssh-rsa ... |
ThirdPartyCpuAlloc | 0-4 | (Optional) Number of CPUs segregated for use with non-Ribbon applications. Restrictions:
|
ThirdPartyMemAlloc | 0-4096 | (Optional) Amount of memory (in MB) that segregated out for use with non Ribbon applications. Restrictions:
|
CERole | ACTIVE/STANDBY | Specifies the CE's role within the HA setup. |
PeerCEHa0IPv4Address | xxx.xxx.xxx.xxx | This value must be the Private IP Address of the Peer SBC's HA interface. |
ClusterIp | xxx.xxx.xxx.xxx | This value must also be the Private IP Address of the Peer SBC's HA interface. |
PeerCEName | N/A | Specifies the actual CE name of the Peer SBC instance in the HA setup. |
SbcHaMode | 1to1 | Specifies the Mode of the HA configuration. Currently, Azure supports only 1:1 HA. |
PeerInstanceName | N/A | Specifies the name of the Peer Instance in the HA setup. Note: This is not the CEName or the SystemName. |
Pkt0HfeInstanceName | N/A | Specifies the instance name of the PKT0 HFE Node. |
Specifies the instance name of the PKT1 HFE Node. | ||
Pkt1HfeInstanceName | N/A |
Create a JSON file using the following structure:
{ "CEName" : "<SBC CE NAME>", "ReverseNatPkt0" : "True", "ReverseNatPkt1" : "True", "SystemName" : "<SYSTEM NAME>", "SbcPersonalityType": "isbc", "AdminSshKey" : "<ssh-rsa ...>", "ThirdPartyCpuAlloc" : "<0-4>", "ThirdPartyMemAlloc" : "<0-4096>", "CERole" : "<ACTIVE/STANDBY>", "PeerCEHa0IPv4Address" : "<PEER HA IP ADDRESS>", "ClusterIp" : "<PEER HA IP ADDRESS>", "PeerCEName" : "<PEER SBC CE NAME>", "SbcHaMode" : "1to1", "PeerInstanceName" : "<PEER INSTANCE NAME>", "Pkt0HfeInstanceName" : "<PKT0 HFE NODE INSTANCE NAME>", "Pkt1HfeInstanceName" : "<PKT1 HFE NODE INSTANCE NAME>" }
- The SBC requires user data in a valid JSON format. If the user-data is not a valid JSON, the instance shuts down immediately.
- You cannot update user data on VMs in the Azure framework.
Sample Meta Variable Table
Example Meta Variable table for a SBC HA is provided below:
Add New Endpoints to UAC
To add a new end point to the Public Endpoint side with HFE1 (for example, 52.52.52.52 is the new end point IP):
Add the end point IP to outbound security group.
- Add the end point IP to the PKT0 subnet custom route table.
Select Next hop type of Virtual Appliance, and the Next hop address as HFE eth2 IP. - Add the end point IP to the Inbound Security Rule of the Security group of nic1 of HFE1, and PKT0 of the SBC.
Add New Endpoints to UAS
Add the IP (for example, 10.2.3.9) to PKT1 subnet custom route table.
Select Next hop type of Virtual Appliance, and the Next hop address as HFE eth2 IP.
HFE Node Logging
The HFE generates the following logs under /opt/HFE/log/
:
- cloud-init-nat.log: Logs generated from the initial configuration.
- HFE_conf.log: Logs generated from the setup of the HFE node. They contain information about:
- SBC instance names
- The IPs for allowing SSH into the HFE node
- The configured zone
- The SBC IPs being used to forward traffic to
- Iptables rules
- Routing rules
- HFE_conf.log.prev: A copy of the previous HFE_conf.log.
- HFE.log:
- Logs which contain messages about any switchover action, as well as connection errors. The logs generated are as follows:
- Connection error detected to Active SBC: <<IP>>. Attempting switchover.
- We have lost connection to the SBC. HFE node now performing switchover action
- Connection error ongoing - No connection to SBC PKT ports from HFE
- This error means that a switchover has been attempted, but no connection could be established to the new SBC.
- The HFE node then continually switches between the SBCs until a connection is established
- This usually means there is a network issue or a configuration issue on the SBCs.
- Switchover from old Active <<Old Active SBC IP>> to new Active <<New Active SBC IP>> complete. Connection established.
- The switchover action is complete and connection has been established to the 'Active' SBC
- Initial HFE startup configuration complete. Successfully connected to <<SBC Instance Name>>
- The HFE node has successfully connected to the active SBC following a boot.
- Connection error detected to Active SBC: <<IP>>. Attempting switchover.
- This log is rotated when it reaches 250MB:
- Up to four previous logs are saved.
- The previous logs are compressed to save disk space.
- Logs which contain messages about any switchover action, as well as connection errors. The logs generated are as follows:
Adding Custom Static Routes to HFE
For specialized deployments, users may need to add specific custom static routes to the HFE at the OS level. The HFE script supports this by using the HFE variable CUSTOM_ROUTES
. It enables the HFE script to add these routes as part of its start-up process and verify these routes continue to be on the HFE throughout the uptime.
CUSTOM_ROUTES is a comma separated list of values in the form <DESTINATION_IP_CIDR>_<INTERFACE_NAME>. For example: 1.1.1.0/26_eth1, 2.2.2.0/28_eth2, 3.3.3.4/32_eth3.
If the HFE is already deployed, the variable is added to /opt/HFE/natVars.user.
Example
echo "CUSTOM_ROUTES=\"<DESTINATION_IP_CIDR>_<INTERFACE_NAME>, <DESTINATION_IP_CIDR>_<INTERFACE_NAME>\"" | sudo tee -a /opt/HFE/natVars.user
For <INTERFACE_NAME>
, use the standard eth0, eth1, and so on always even if the Linux distribution does not use this naming convention. The HFE_AZ.sh
determines the interface to add the route.
Creating a HFE Sysdump
The HFE_AZ.sh script can create an archive of useful logs to help with debugging (similar to the SBC sysdump). Run the following command to collect the logs:
sudo /opt/HFE/HFE_AZ.sh sysdump
Output of:The following details are collected:
- Interfaces
- Routes
- IPtables
- dmesg
- conntrack count
- conntrack extended list
- The VM Azure metadata
- journalctl errors
- dhclient logs
- System-networkd logs
- The logs:
- syslog
- waagent logs
- cloud-init logs
/opt/HFE/*
(without previous sysdumps)- All user bash history
The sysdumps archives are stored in the .tar.gz
format under /opt/HFE/sysdump/
.
Handling Multiple Remote SSH IPs to Connect to HFE Node
The following section contains the instructions to set multiple SSH IPs to access the HFE node as well as to update the instances to add in more SSH IPs.
Ensure the REMOTE_SSH_MACHINE_IP is not set to an IP where the call traffic is originating from. It can break the HFE logic and the traffic fails to reach the SBC.
Initial Orchestration
During orchestration, you can supply multiple IP addresses to the appropriate variable with a common separated list. For example, 10.0.0.1, 10.0.0.2, and 10.0.0.3. The following table represents the list of variables that need to be set for each orchestration type:
Table 6 Initial Orchestration
Cloud | Orchestration Type | Variable Name |
---|---|---|
Azure | Manual creation using CLI | REMOTE_SSH_MACHINE_IP (in customData) |
Terraform | remote_ssh_ip |
Updating Remote SSH IPs
The following steps describe the procedure to update the Remote SSH IPs on the Azure.
- To add in a new Remote SSH Machine IP, you need to supply the full list of IPs for which the routes need to be created.
- The following procedure results in network outages as the HFE requires a reboot to select the latest list.
Azure
Azure does not support updating Custom Data after a VM is created. To update a HFE variable, use the following procedure:
- Log on to the HFE node as a rbbn user.
Enter the updated variable to/opt/HFE/natVars.user. For example:
echo "REMOTE_SSH_MACHINE_IP=\"10.27.0.54,10.36.9.6\"" | sudo tee -a /opt/HFE/natVars.user
Reboot the HFE:
sudo reboot
Any variable added to /opt/HFE/natVars.user will overwrite the values set as the variables in custom data. Ensure you enter the complete list of IPs for which the routes need to be created.
Enabling PKT DNS Support on HFE
The DNS queries on the SBC PKT port are sent using the primary IP. The HFE variable ENABLE_PKT_DNS_QUERY is used to enable the support for the HFE to forward these requests correctly.
To enable the PKT DNS Support option on an already configured HFE setup:
- Log on to the HFE node as a RBBN user.
Add the
natvar
ENABLE_PKT_DNS_QUERY
to/opt/HFE/natVars.user
with the value 1.echo "ENABLE_PKT_DNS_QUERY=1" | sudo tee -a /opt/HFE/natVars.user
Reboot the HFE.
sudo reboot