You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 9 Next »

In this section:

 

 

This section describes the best possible performance and scale for a given virtual machine resource profile.

Purpose

Real-time applications have stringent requirements with respect to jitter, latency, quality of service and packet loss. The migration of real-time applications to an all-software environment requires deterministic response to failures and performance in the scheduler of the hypervisor and the host operating system (OS). Some fine-tuning can be done to achieve maximum scale and reliable performance for the SBC SWe and ancillary applications. This page defines the areas that can be fine-tuned in OpenStack/KVM environments.

The Sonus SBC SWe requires a reservation of CPU, memory and hard disk resources in virtual machines in addition to implementing certain performance tuning parameters for any production deployments that support over 100 concurrent sessions.

Note

The OpenStack infrastructure supports I/O (PCIe) based NUMA scheduling as referenced here.

General Recommendations

The following general recommendations apply to any platform where SBC SWe is deployed:

  • The number of vCPUs deployed on a system should be an even number (4, 6, 8, etc.).
  • For best performance, deploy only a single instance on a single NUMA. Performance degradation occurs if you host more than one instance on a NUMA or if a single instance spans multiple NUMAs.
  • Make sure that the physical NICs associated with an instance are connected to the same NUMA/socket where the instance is hosted. In the case of a dual NUMA host, ideally two instances should be hosted, with each instance on a separate NUMA and the associated NICs of each of the instances connected to their respective NUMAs.
  • To optimize performance, configure memory card equally on both NUMA nodes. For example if a dual NUMA node server has a total of 128 GiB of RAM, configure 64 GiB of RAM on each NUMA node.

Recommended BIOS Settings

Sonus recommends applying the BIOS settings in the table below to all Nova compute hosts running the Sonus VMs for optimum performance:

  • S-SBC
  • M-SBC
  • T-SBC

 

Recommended BIOS Settings

BIOS Parameter
Setting
Comments
CPU power managementBalancedSonus recommends Maximum Performance
Intel hyper-threadingEnabled 
Intel turbo boostEnabled 
SR-IOVEnabled 
Intel VT-x (virtualization technology)EnabledFor hardware virtualization

BIOS Setting Recommendations for HP DL380p Gen8 Server

BIOS ParameterRecommended
Setting
Default Value
HP Power ProfileMaximum PerformanceBalanced Power and Performance
Thermal ConfigurationOptimal CoolingOptimal Cooling
HW PrefetchersDisabledEnabled

 

CPU Pinning Overview

Apply below settings to all Nova compute hosts in the pinned host aggregate.

Nova Compute Hosts

Applies to:Configuration
S-SBC3.b
M-SBC3.b
T-SBC3.b

From the hypervisor's perspective, a virtual machine appears as a single process that should be scheduled on the available CPUs. By design, hypervisors schedule the clock cycle on a different processor. While this is certainly acceptable in environments where the hypervisor is allowed to over-commit, this contradicts the requirements for real-time applications. Hence, Sonus requires CPU pinning to prevent applications from sharing a core.

CPU with Unpinned Applications

CPU with Pinned Applications

 
 

By default, virtual CPUs are not assigned to a host CPU, but Sonus requires CPU pinning to maintain the requirements of real-time media traffic. The primary reason for pinning Sonus instances is to prevent other workloads (including those of the host OS) from causing significant jitter in media processing. It is also possible to introduce significant message queuing delays and buffer overflows at higher call rates. Instances with pinned CPUs cannot use the CPUs of another pinned instance. This prevents resource contention and improves processor cache efficiency by reserving physical cores. Host aggregate filters or availability zones can be used to select compute hosts for pinned and non-pinned instances. OpenStack clearly states that pinned instances must be separated from unpinned instances as latter will not respect the resourcing requirements of the former.

To enable CPU pinning, execute the following steps on every compute host:

  1. To retrieve the NUMA topology for the node, execute the below command:

    # lscpu  | grep NUMA
    NUMA node(s):          2
    NUMA node0 CPU(s):     0-11,24-35
    NUMA node1 CPU(s):     12-23,36-47
    Note

    In this case, there are two Intel sockets with 12 cores each; configured for hyper-threading. CPUs are paired on physical cores in the pattern 0/24, 1/25, etc. (The pairs are also known as thread siblings).

  2. The following code must be added at the end of /etc/default/grub:

    GRUB_CMDLINE_LINUX="$GRUB_CMDLINE_LINUX hugepagesz=1G hugepages=256"
    Note

    The number of hugepages depends on how many VM instances are created on this host and multiplied by the memory size of each instance. The hugepagesz value should be the maximum hugespace value supported by the kernel being used.

  3. A pin set limits KVM to placing guests on a subset of the physical cores and thread siblings. Omitting some cores from the pin set ensures that there are dedicated cores for the OpenStack processes and application. The pin set ensures that KVM guests never use more than one thread/core while leaving the additional thread for shared KVM/OpenStack processes. This mechanism boosts the performance of non-threaded guest applications by allowing the host OS to schedule closely related host OS processes on the same core with the guest OS (e.g. virtio processes). The following example built on the CPU and NUMA topology shown in step 1 (above):

    • For a hyper-threading host: Add the CPU pin set list to vcpu_pin_set in the default section of /etc/nova/nova.conf:

      vcpu_pin_set=2-11,14-23,26-35,38-47

       For compute nodes, servicing VMs which can be run on hyper-threaded hosts, the CPU pin set includes all thread siblings except for the cores which are carved out and dedicated to the host OS. The resulting CPU pin in the example dedicates cores/threads 0/24,1/25 and 12/36,13/37 to the host OS. VMs use cores/threads 2/26-11/35 on NUMA node 0, and cores/threads 14/38-23/47 on NUMA node 1.

  4. Update the boot record and reboot the compute node.

  5. Configure the Nova scheduler to use NUMA topology and aggregate instance extra specs on Nova controller hosts:

On each node where the OpenStack compute scheduler (openstack-nova-scheduler) runs, edit the nova.conf file that is located at /etc/nova/nova.conf. Add the AggregateInstanceExtraSpecFilter and NUMATopologyFilter values to the list of scheduler_default_filters. These filters are used to segregate the compute nodes that can be used for CPU pinning from those that cannot and to apply NUMA-aware scheduling rules when launching instances:

    • scheduler_default_filters=RetryFilter,AvailabilityZoneFilter,RamFilter,

    • ComputeFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,CoreFilter,

    • PciPassthroughFilter,NUMATopologyFilter,AggregateInstanceExtraSpecsFilter

      In addition to support SR-IOV, enable the PciPassthroughFilter and restart the openstack-nova-scheduler service.

      systemctl restart openstack-nova-scheduler.service

      With CPU pinning enabled, Nova must be configured to use it. See the section below for a method to use a combination of host-aggregate and Nova flavor keys.

CPU Model Setting

Apply the following settings to all Nova compute hosts where Sonus VMs are installed.

Applies to:
EMS
PSX-M
PSX-Replica
S-SBC
M-SBC
T-SBC

The CPU model defines the CPU flags and CPU architecture that are exposed from the host processor to the guest.

Non-S/M/T-SBC Instances

Sonus supports either host-passthrough or host-model for non-S/M/T-SBC instances.

S/M/T-SBC Instances

Modify the nova.conf file located at /etc/nova/nova.conf. Sonus recommends setting the CPU mode to host-model for SBC instances so every detail of the host CPU can be known by SBC SWe.

This setting is defined in /etc/nova/nova.conf:

[libvirt]
virt_type = kvm 

cpu_mode = host-model

This change is made in /etc/nova/nova-compute.conf:

[libvirt]
virt_type = kvm

CPU Frequency Setting in the Compute Host

Check the current configuration of the CPU frequency setting using the following command on the host system.

# cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

The CPU frequency setting must be set to performance to improve VNF performance. Use the following command on the host system:

# echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
Note

You must ensure that you keep the above settings persistent across reboot.

 

Removal of CPU and Memory Over Commit

Apply the following settings to all Nova compute hosts where Sonus VMs are installed:

  • S-SBC
  • M-SBC
  • T-SBC

The default settings for CPU (1.16) and Memory (1:5). Modify the nova.conf file located at /etc/nova/nova.conf, and change the default settings of cpu_allocation_ratio and ram_allocation_ratio to (1:1) for resource reservation.

cpu_allocation_ratio = 1.0
ram_allocation_ratio = 1.0

Adjusting the Tx Queue Length of a Tap Device

Apply the follwing settings to all Nova compute hosts where Sonus VMs are installed:

  • S-SBC
  • M-SBC
  • T-SBC

While using centralized mode with virtual nics (virtio), OpenStack creates tap devices for each port on the guest VM. The Tx queue length of the tap devices is set to 500 by default which defines the queue between the OVS and the VM instance. The value 500 is too low on the queue; this increases the possibility of packet drops at the tap device. Set the Tx queue length to a higher value that increases performance and reliability. Use a value that matches your performance requirements. 

The sample commands below are for Ubuntu 4.4; use the syntax that corresponds to your operating system.

Modify the 60-tap.rules file and add the KERNEL command
# vim /etc/udev/rules.d/60-tap.rules
KERNEL=="tap*", RUN+="/sbin/ip link set %k txqueuelen 1000" - Add this line
# udevadm control --reload-rules
Use the below command to apply the rules to already created interfaces:
# udevadm trigger --attr-match=subsystem=net

Kernel Same-page Metering (KSM) Settings

Apply the following settings to all Nova compute hosts where Sonus VMs are installed:

  • S-SBC
  • M-SBC
  • T-SBC

Kernel same-page metering (KSM) is a technology that finds common memory pages inside a Linux system and merges the pages to save memory resources. In the event that one of the copies is updated, a new copy is created so the function is transparent to the processes on the system. For hypervisors, KSM is highly beneficial when multiple guests are running with the same level of the operating system. However, there is an overhead due to the scanning process which may cause the applications to run slower. The SBC SWe requires that KSM be turned off.

The sample commands below are for Ubuntu 4.4; use the syntax that corresponds to your operating system.

# echo 0 >/sys/kernel/mm/ksm/run
# echo "KSM_ENABLED=0" > /etc/default/qemu-kvm

Once KSM turned-off, it is important to verify that there is still sufficient memory on the hypervisor. When the pages are not merged, it may increase memory usage and lead to swapping that negatively impacts performance.

Hyper-threading Support

Hyper-threading is designed to use idle resources on Intel processors. A physical core is split into two logical cores creating parallel threads. Each logical core has its own architectural state. The actual performance gains from using hyper-threading depend on the amount of idle resources on the physical CPU.

Hyper-threading is shown in the diagram below.

Hyperthreading Support

Sonus VNF CPU Pinning and Hyper-threading Support

Hyper-threading should be enabled in the BIOS for all Sonus NFV elements.

VNF CPU Pinning and Hyper-threading Support

VNFCPU-PinningHyper-Threading Flavor Setting
S-SBCRequired

Required

M-SBC

Required

Required

T-SBCRequired

Required

Sonus VNF Tested Configurations

VNF Tested Configurations

VNF

CPU-Pinning

(hw:cpu_policy=dedicated)

Hyper-Threading
Flavor Setting

RAM*DiskCores / vCPUs
S-SBCPinned

Yes

128 GiB*100 GB20 / 40
M-SBCPinned

Yes

32 GiB*100 GB10 / 20
*Memory values rounded to the next power of 2 to prevent memory fragmentation in the Nova compute scheduler.

Host-Aggregate Method for SMP VM Placement

A few methods exist to influence VM placement in OpenStack environments. The method described in this section segregates Nova compute nodes into discrete host aggregates and use Nova flavor-key aggregate_instance_extra_specs so that specific flavors will use specific host aggregates. For this to work, all flavors must specify a host aggregate. This is accomplished by first assigning all existing flavors to a "normal" host aggregate, then assigning only the Nova compute hosts configured for non-hyper-threading to a "Pin-Isolate" host aggregate.

From the Openstack CLI, create the host aggregates and assign compute hosts:

% nova aggregate-create Active-Pin-Isolate
% nova aggregate-set-metadata Active-Pin-Isolate Active-Pin-Isolate=true
% nova aggregate-add-host Active-Pin-Isolate {first nova compute host in aggregate}
    {repeat for each compute host to be added to this aggregate}

% nova aggregate-create Active
% nova aggregate-set-metadata Active Active=true
% nova aggregate-add-host Active {first nova compute host in aggregate}
    {repeat for each compute host to be added to this aggregate}
Note

Ensure all existing flavors in the entire stack specify the hyper-threaded aggregate by using the "aggregate_instance_extra_specs:Active"="true" metadata parameter. Otherwise, flavors can get scheduled on the hosts with pinning and the non-pinned VMs will not respect the pinned isolation.

From the Openstack CLI, assign all existing flavors to the non-pinned host aggregate:

% for FLAVOR in `nova flavor-list | cut -f 2 -d ' ' | grep -o [0-9]*`; \
    do nova flavor-key ${FLAVOR} set \
        "aggregate_instance_extra_specs:Active"="true"; \
    done

Tested Flavor Definitions

The flavor definitions listed below include the following extra specs:

  • hw:cpu_policy=dedicated: This setting enables CPU pinning.

  • hw:cpu_thread_policy=prefer: This setting allocates each vCPU on thread siblings of physical CPUs.

  • hw:numa_nodes: This setting defines how the host processor cores are spread over the host NUMA nodes. When this is set to 1, it ensures that the cores are not spread over more than 1 NUMA node, ensuring the performance of having one; otherwise Nova would be free to split the cores up between available NUMA nodes.

  • hw:cpu_max_sockets: This setting defines how KVM exposes the sockets and cores to the guest. Without this setting, KVM always exposes a socket for every core with each socket having one core. This requires a mapping in the host virtualization layer to convert the topology, resulting in a measurable performance degradation. That performance overhead can be avoided by accurately matching the advertised cpu_sockets to the requested host numa_nodes. Using the *_max_* variable ensures that the value cannot be overridden in the image metadata supplied by tenant-level users.

EMS SWe and PSX SWe Flavor Examples

#EMS
% nova flavor-create EMS-SK-E-01P auto 16384 60 8
% nova flavor-key EMS-SK-E-01P set aggregate_instance_extra_specs:Active=true hw:cpu_policy=dedicated

#PSX Master
% nova flavor-create PSX-SK-PM-01P auto 65536 180 20
% nova flavor-key PSX-SK-PM-01P set aggregate_instance_extra_specs:Active=true hw:cpu_policy=dedicated

#PSX Replica as SRv6 Proxy
% nova flavor-create PSX-SK-SRV6-01P auto 32768 180 16
% nova flavor-key PSX-SK-SRV6-01P set aggregate_instance_extra_specs:Active=true hw:cpu_policy=dedicated
% nova flavor-key PSX-SK-SRV6-01P set hw:numa_nodes=1 hw:cpu_max_sockets=1

#PSX Replica as D+ 
% nova flavor-create PSX-SK-CD-01P auto 32768 180 16
% nova flavor-key PSX-SK-CD-01P set aggregate_instance_extra_specs:Active=true hw:cpu_policy=dedicated
% nova flavor-key PSX-SK-CD-01P set hw:numa_nodes=1 hw:cpu_max_sockets=1

SBC SWe Flavor Example

To create an M-SBC SWe flavor with 20 vCPUs, 32 GiB of RAM and 100 GB of Hard disk, enter the following Nova commands from the Openstack CLI.

% nova flavor-create SBC-SK-CM-01P auto 32768 100 20
% nova flavor-key Sonus-MSBC set hw:cpu_policy=dedicated hw:cpu_thread_policy=prefer
% nova flavor-key Sonus-MSBC set hw:cpu_max_sockets=1
% nova flavor-key Sonus-MSBC set hw:mem_page_size=2048
% nova flavor-key Sonus-MSBC set hw:numa_nodes=1

To create a S-SBC SWe flavor with 128 GiB RAM and 100 GB of Hard Disk based on 2 x NUMA nodes of 20 vCPUs each (For example, 40 vCPUs for S-SBC), enter the following Nova commands from the Openstack CLI.

% nova flavor-create SBC-SK-CS-01P auto 131072 100 40
% nova flavor-key Sonus-SSBC set hw:cpu_policy=dedicated hw:cpu_thread_policy=prefer
% nova flavor-key Sonus-SSBC set hw:cpu_max_sockets=2
% nova flavor-key Sonus-SSBC set hw:mem_page_size=2048
% nova flavor-key Sonus-SSBC set hw:numa_nodes=2

Regarding the default setting, numa_mempolicy=preferred, the NUMA memory allocation policy is set to "strict" which forces the kernel to allocate memory only from the local NUMA node where processes are scheduled. If memory on one of the NUMA node is exhausted for any reason, the kernel cannot allocate memory from another NUMA node even when memory is available on that node. With this in mind, using the default setting would have a negative impact on applications like the S-SBC. This setting is in reference to the link below:

https://specs.openstack.org/openstack/nova-specs/specs/juno/implemented/virt-driver-numa-placement.html

References

  • No labels